(Tip-2) ガウス型軌道の具体的表現

(a) ガウス型軌道の一般形

$$\chi = Nx^l y^m z^n \exp(-\alpha r^2) \equiv N\chi_0$$

$$N = \left\{ \frac{2^{2(l+m+n)+3/2} \alpha^{l+m+n+3/2}}{(2l-1)!!(2m-1)!!(2n-1)!!\pi^{3/2}} \right\}^{1/2}$$

(b) 具体的表現

対象軌道	χ GTO	係数 N	χ 0
1s,2s,3s 軌道	χ s	$\left(\frac{2\alpha}{\pi}\right)^{3/4}$	$\exp(-\alpha r^2)$
2p,3p 軌道	χ р	$2\alpha^{1/2} \left(\frac{2\alpha}{\pi}\right)^{3/4}$	$(x, y, z) \exp(-\alpha r^2)$
3dz ² 軌道 3dx ² ,3dy ² : 同タイプ	χd	$\frac{4\alpha}{\sqrt{3}} \left(\frac{2\alpha}{\pi}\right)^{3/4}$	$z^2 \exp(-\alpha r^2)$
3dxy 軌道 3dyz,3zx:同タイプ	χ _d '	$4\alpha \left(\frac{2\alpha}{\pi}\right)^{3/4}$	$xy \exp(-\alpha r^2)$
3 d x ² -y ² 軌道 これは使用しない		省略	省略

3d 軌道は、 $3dx^2$, $3dy^2$, $3dz^2$, 3dxy, 3dyz, 3dzx の 6 つの軌道を使用する。

(a) スケール因子 (a) の適用

軌道の広がりを表現するため、スケール因子 $\zeta_0=\mathbb{Z}/n$ (\mathbb{Z} :原子番号 n:主量子数)を適用する。

$$r \rightarrow \zeta_0 \cdot r$$

と置き換えると、

$$\alpha$$
 ($\zeta_0 \cdot \mathbf{r}$)² \rightarrow ($\alpha \zeta_0$ ²) \mathbf{r} ²

であるから、実際には

$$\alpha \rightarrow \alpha \zeta_0^2 = \alpha (Z/n)^2$$

として処理をし、上表の式がそのまま適用される。